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Considered herein are some problems in elasticity with random external loads. Boundary 
value problem formulations are obtained involving moments of arbitrary order for the random 
tensor fields of stresses and displacements. For these problems, proof is given of the un- 
iqueness theorem and of a minimum principle similar to the principle of minimum potential 
energy of classical elasticity, 

By way of an example, the solution is obtained to the boundary value problem for second 
order moments of the stress tensor in the half-plane r >,O in the presence of normal and 
shearing loads on the boundary x = 0, the loads being statistically homogeneous, random 
functions of y. 

1. We consider two problems in elasticity: the displacement problem when the body for- 
ces f, and surface loads qI are given 

dlfij 1 lkj = - fit rijni = Qi (X, E S), Zij r;f Cijkl aWk / ax1 (1.1) 

and the stress problem when, in addition to the forces j, and 41, the incompatibility tensor 

lftR is given 

a%; / axj = - fi, ripi = qi fx8 E $) 

Pek,, 
Ei;kEtmn r = 

3 *n 
Vi17 ekm = Skmijri! (I.21 

Here 7 is the stress tensor; c 
u 11 

is the strain tensor; w, is the displacement vector; 

cilkl, atjkl are the tensors defining the elastic properties of the medium; n, is the normal to 
the body surface s; ettk is the unit, antisymmetric, pseudotensor. 

Let f,, p, and vi1 be random functions of the coordinates xa, given by their mean vaiues 

and moments of various orders [l]. In view of the ordinary (with respect to wf and T,~ ) and 
statistical (the absence of products of the random quantities) linearity of all Eqe. in (1.1) 
and (1.2), we may obtain separate boundary value problems for the mean values and moments 
of any order [ 21. 

For the mean values, the problem statements are the same as (1.1) and (1.21, with the 
random functions replaced by their mean values. Such equations are also obtained for the 
deviations from the mean vafues. 

Fotthe moments of order n (n = 1, 2, 3,...) 

Vi,...i, = (Vi, (2,l) . ’ ’ Ui, (~,“)), p’ ’ wl...‘nI, ’ . = !Piijr (Es’) ’ ’ ’ Pi, j, (58%)) (1.3) 

rirjr. ..i, j, = (T<,j, CzS1) ' * ' 7"n j, (z8n))9 Vi = Wi- (Wi), 

Fij = %ij - Czij>9 rij = eij - (eij) 
writing each of he Eqs. in (1.11 and (1.21 for the deviations at the points Mk(r,k), fc = 1, 

. . . . al, multiplying and taking the means, we obtain, respectively, the boundary value prob- 
lema (1.41, (1.51 and (1.41, (1.6) 
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anpi,j*...injn 
axj,l . . . axjnR 

= (-- 1)” fi,...i, (1.41 

P {,j,. . .in jnnj, (‘8’) ’ * ’ njn txSn) = Qf,... i hll . . .) x*nEs) 
n 

anv k,...k,, 
pi,jt...i j = 'itj,kJt ’ . ’ cinj,knl, ax,, . . . i3xln nn 

(1.51 

Tklml...kn m n = Skrmtiljl * ’ . Sknmnin jn Pi,j,...f, jn 

a2n~k,m,...k m 
Eiljrkl~llmln, * ’ ’ &i j k El m n 

n n = 
axj,laxn,l...i3x. *ax n rl. 

n n n n n n 
t,I,...in 1, (1.6) 

jn % 

fw, = (fit’ (X8’) - * - fi,’ (x5?>, q4,...in = (q4,’ @,l) * * * P,’ k,“)) 

%,l,...i n ‘n 
= (r)i,;, (‘2) ’ ’ ’ 7in in (X3”)) 

Here, f, .-slnn qi, -.i, and Q,J, l -i,~, are the moments of the forces fi, qr and of the 

incompatibflity tensor q,r. Here and hereinafter the angular brackets denote statistical means 
of the corresponding quantities while the primed quantities are the deviations from the 
means. 

In connection with the boundary value problems (1.41, (1.51 and (1.41, (1.61, we note the 
following: 

1) If, instead of (1.11, we consider the problem of given random displacements $r(z 3 on 
the boundary s, then the corresponding boundary value problem for the momants of order n 
will contriu the first group of relations (1.41, relations (1.5) and the boundary conditions 

Vi,. .in =& ,.., i, (x,1, . . ., XC), x,l, . . *, xsnES 

$h...i = (fi$ (X8’) - * * *in’ (xsR)) (1.71 

21 guppose that fr, qr, ?rLandj, are random functions of position and slowly varying ran- 
dom functions of time so that a quasi-static analysis ia valid. Then the above mentioned mo- 
ments are defined by relations of the form 

Vi,.,.i, = (bj, (X,l, tl) * a * Vi, (Xsn, t,,)) 

where, as before, (1.41 to (1.71 hold. 
3) The boondary value problem (1.41, (1.6) includes the quasi-static theory of continuous 

dislocations for the case in which the dislocation density tensor has a statistical distribu- 
tion. The incompatibility tensor rl,, may be expressed in terms of the dislocation density 
tensor a,, by means af the relation 131 

%l = eijk aU,j / 8X, 

Thus, if the dislocation density a,, is a random tensor field with moments 

%j,...Z, j, = <a,;* (X8’, h) - - * Q,,;pSn~ L), 

then the stress moments are defined by problem (1.41, (1.61 with 

ana 
rl ill,. . .i,.I, = eiljtl.I * . ’ % 

1,L.. In jn 

j k nnn ax kz “’ ax k, 

4) Other statistical problems in mechanics of deformable solids are redacible to problem 
(l.l), (1.2) namely, viscoelastic problems with random loading (problem (1.11, (1.21 is ob- 
talned by Laplace transformation of the desired functions); problems concerning the defonna- 
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tion of nonlinear by elastic and elasto-plastic bodies under the action of random loads (by 
employing the method of elasdc solutions 141); d e f ormation problems of bodies with random 

inhomogeneities and random irregularity on the boundary (in solving these problems by the 
method of perturbations [S to 81). 

In all of the indicated cases, the problem of determining the statistical characteristics 
of the stress, strain and displacement fields may be viewed in terms of the boundary value 
problems (1.4), (1.5) and (1.41, (1.6). 

5) The set of moments (1.3) define a multi-point distribution of the random fields [9 and 
lo], and therefore the set of solutions of boundary value problems (1.4), (1.5) and (1.4), 
(1.6) statistically completely defines the fields ‘r,,, e,,, w,. 

2. The moments of the stress and strain tensors are interrelated by 

Pilj,.,.in jn = ci,jlklZl ’ ’ . ‘i, jnknInrl-Jl...~~n~, 

Gi,ll...h.,l, = Sh.llriljl ’ + ’ ‘h. I i j Piljt...in jn nn7ln 

Let US introduce the potential function V, of nth order moments 
3V, 

(2.1) 

Pitjb..injn = tQilj ,,.. i j 
nn 

By virtue of (2.1). we have the relations 

‘7l = 1/2si,j,/,,[, * ’ ’ ‘i 

n n’n n 
j $. 1 piljl...in j,,Pl,,l,...k, I,, 

ri,j,...i, jn = 3~. .avn 
hjt.. .in jn 

Let us assume &at V, is a positive-definite form in its arguments. The potential func- 
tion will be a homogeneous quadratic form of 6” variables ytJI... ,“, ; every coefficient in 

the form is a product of elastic constants of the material under coust *a eratfon with the sum 

of the exponents in the product equal to n; the coefficients also contain numerical factors. 
Hence, the positive definite character of V’ may be verified, but this involves an extremely 
laborious investigation. 

In the case of an isotropic body, for example, for V,, we have 

v2 = ‘/ah2riih.krppss f iv (ri:klrppkl + r((kkrijss) + 2pPTijklrijkl (2.2) 

where A and ~1 are the Lam6 constants. The usual conditions 

P > 0, 3h + 2p > 0 
guarantee the positive-definiteness of form (2.2). 

Thus, let the moment potential V be a 
rem holds for the boundary value pro lems a P 

ositive definite form. Then the uniqueness theo- 
1.41, 

(1.4), (1.5). 
(1.5) and (1.4). (1.6). We will prove it for 

Consider two solutions 

uk,.?~k,~ 
p. (1) 

m.. .in in 
; ‘k,@)k , . . . n p**jF .i, 1, 

for problem (1.41, (1.5) with the same functions jr,..., “I The difference of these 

solutions satisfies the homogeneous differential equations WI 
4r,.-k h 

omogeneous boundary con- 
ditions 

anpi,jl...i j 
nn =o 

ax.‘...ax. n 
31 h 

Ptj,. . .i, jn njl (za’) * * - nj, (Zen) = 0, xal, . . ., xan E s (2.3) 
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anvil...i 

‘n = + pi,jl_..in jn ax, 1 . . . ai_ n 
31 In 

(2.4) 

Utilizing (2.4) and applying the Ostrogradskii-Gauss formula to each group of variables 
x/N = 1 ,...,_a), we find 

“SV,dul”‘d~,=-_S...Sui,...i~ aa~~~~i::.;I:i_do,...du.f 
(VI (0) 31 372 

(2.5) 

In view of (2.31, (2.5) may be written as 

Whence, by virtue of the positive-definiteness of i’,, it follows that l$o = 0 and 

anvil f 
pijl.. .i, j, = O’ ri,j,...i j = ‘9 7lR az 1 ’ a,” A = 0 

h 
. . . . 

Jn 
Thus, the boundary value problem (1.4), (1.5) uniquely determines the moments of the 

stresses and strains while the displacements are determined up to the solutions of Eqs. 

@‘il... 
'n 

1 
0 

ax. IL . ..axj*n = 

For boundary conditions (1.71, the displacement moments obtained are single-valued. 
From the foregoing, it is evident that there exists a clearly defined analogy between 

problems (1.4), (1.5) and (1.4), (1.6) and elasticity problems (1.11, (1.2) with determinate 
functions f,, q,, q,, which is only natural. This analogy may be extended, and we can prove 
for problems (1.41, (1.5) and (1.41, (1.6) a whole series of theorems which are known in elas- 

ticity. As an example, we will formulate and prove for problem (1.41, (1.5) the minimum prin- 
ciple which is analogous to the principle of minimum potential energy. 

Consider the functional 

W, [Vil...f,l = ‘. * * I s [V, (ri,j,.,.injn) + (M-1)” fi,...i,vi,... i,.,l dvl * * * dun - 
w 

- . . . s s Qi ,... i vi,...i,dSl. * *dsn (2.6) 
n 

(8) 
The following minimum principle holds: The functional (2.61, considered as a functional 

on the admissible (in the sense of smoothness) moment fields uil... u,,, attains an absolute 
minimum on the real fields satisfying (1.41, (1.51. 

We will prove this principle. Let u,~ . . . u,, be real and u, . . . ,, + bu, . . . . be arbitrary 

admissible displacement moments. Then, since v,., is a homtgeneous qu:drafic form, we have 

‘n (riljl. ..i, j,, + A'l'ij ,.,. in jn) = 

= ‘n (rMl...injn) + ‘n (AriJr...,nj,,) + 
av, 

arf,j ,... i, i, AT,,, ,_._ f, jn (2.7) 

and, therefore 

~nh...in+Avi I... i,l--w, [vi I.., r,] = s s -a k(~r,,, ,... injn)dv~- -dv, + K 
CD) 
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Utilizing the relation 

anAV**...ln 
P ilj,. .injnArt,jl.. .<,, j,, = Pi,jt.. .j,, j, az I 

jr . . * axinn 

and transforming the first term in (2.8) in the same manner as before, we obtain 

K=- “* s SC 
aRPi,j,...i j 

ax I...~; “, -(--l)“fi I... i&vi ,... i,dv,...dv,+ 
(V) jt h 

ln view of (1.4). (1.51, (2.9) yields K = 0. Hence, if the functions Ay,,, _.., j are not 

identically zero, then by virtue of the positive-definiteness of V,, (2.7) yre\ds” ” 

W,[U~,...~n+AVi,...~,I- w/I;, [%...i,l = ** * '~(A~i~j,...injn)dvl...dv~>o s s 
(0) 

which proves the previously stated minimum principle. 

3. As an example in solving boundary value problems of the type (1.4), (1.61, consider 
the deformation of a half-plane under the action of random loads applied on its boundary. 

For the plane problem involving random surface loads ql, qa the boundary value prob- 
lem for the second order stress moments pltkt may be written in the form 

L714L724cD = 0 (‘D = V’(X1, Yd p’ (x2, Yz)>) 

Pij@j t”d nZ t”Z) = qih* M1,MaE L (3.1) 

Here, qlk are the second order moments of the loads q1 and q ; L is the boundary; Vk2 

is the Laplacian with respect to the point coordinates Mk(nk, yk ! ; @ is the second order 
moment of the stress function. 

In (3.1). the subscripts range over the values 1, 2. The quantities p,jk, are given in terms 
of the stress function (f? by the relations 

PD WD a40 
mm = ay,zay22 9 Paz= = ax12&.*2 v Pm* = ax,ay,axay, 

aw aw a4aJ 
Pma = ayl*&.a2 T Pa*11 = ar.2ay2z t ma = - ayl*aXzayz 

a4m a4Q a4cD 
Plm=- axlaylayaa 1 ~~~la=-axl*ax,aya 9 Pl~a=-axlaylaxa2 

Consider the deformation problem for the half-plane z >/O under the action of normal and 
shearing loads q1 and q2, respectively, which are uncorrelated, statistically homogeneous, 
random functions of the y coordinate. 

In that case, 

Qll = Qll @IIt qzz = Qzz (rlh Q12 = QZl = 0. rl = Y, - Yl 
The differential equation for @ (x1, x9 r~) is then given by 

-_!?%- + 2 ~rlzax~~zaa 
a4 

iYXl’dXZ4 (A@! + a’14 CM@) + 2 a,,4 -?- (aj) + 

aa aw 
+2qr(AW+,,,=o (3.2) 

where A is the Laplaciau with respect to xt, .zy and (for x1 = x2 = 0) the boundary condi- 
tions are 
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Pull = cll VI)* Pal21 = Qaa (tl)* Pl141 

Let q 11 and 422 be given by the spectral representation 

qtk (q) = 1 sib (h) eiA”d)L 

and let us aeek a solution to the problem%2j, (3.3) in the 
m 

a Pall1 - 0 

form 

0 (XI, za, q) = 5 U (XI, ~2, h) @"da 

(3.3) 

(3.4) 

Then we obtain a differential equation for (I (.zl, xz, h) in the form 

aW C34u 

az~‘axar -2~ & (Au, + A4MU + a4 _ axpax - 2h’JAU + hsU = 0 (3.5) 

and the boundary conditions (for x t = r2 = 0) 

Tllll - Sll PA 28121 = 4s (k)v rllal = Tall1 = 0 (3.6) 
where T ,,k, are given in terms of U by 

Zllll = h4U, 
aw aw 

-p 
T2222 - az12a222 t ~121a = A2 az,axz 

aw 
Tl122 = - a2 7 t1112 = ih3 g, 

aw 
ax22 1 %.iz = - ih ax12ax2 

raeli txl* % a) = ~1122 (zatg, 9~ - A) 

%I211 (% 22, 1) = ‘cl112 (22, 21r- A) 

fiP2n i217 z2~ a) = Taau (227 X19- A) 

The solution of problem (3.5), (3.6) takes the form 

U = [a + b (x1 + ~2) -I- czlxn] e-lh’(r~+x*) 

Sl (A) 
a=r, b=+&h), ,_= s1(‘);42(h) , s1 = s1*, sg = sqz 

The stress moments (3.4) are given by the relations 

Pllll = T1° + (Xl -I- 22) Tl’ + ZlZ2 VI2 + T22) 

Pzaaa = Tie + 4T20 - (21 + ;tpHTll + 2T2’) + 5122 (T12 + T22) 

P1212 = Tao - (21 + 22) T2’ + 5122 (T12 + Ta2) 

Pll2a = Tl” + ~1 CT,’ f 2T2’) - 52T1’ - 2152 (T12 f Ta2j 
(3.7) 

All2 = -4,’ + z*61,’ + 2152 (R,2 + R,2) 

Pas12 = -2R2’ + ~1R2’ + 22 (RI’ $ 2R2’) - ~1~2 (RI2 $ R,‘) 

Pa11 (21, % 1) = Al22 (z2* 211 - W? Pl211 (% 229 q1) = Plll2 (12, 51, - q) 

P1222 (219 Z2r ‘1) = P2212 (527 Zl, - rl) 

The expressions for 2’: and f$ are of the form 
00 

Ti’ = 2 
s 
hh‘Si (A.) COS (hq) e-‘(xltx’)dh, Ri” = 2 5 h’~i (h) sin ($,q) e-a(X’+Xf)dh 

0 0 

(i==l, 2; k=O, 1, 2) (3.8) 

Consider two particular cases of the problem under consideration, for which solutions 
have been obtained by other methods. 
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1) The problem of stress- concentration resulting from surface unevenness for the half- 
plane having an uneven boundary x = ,~A(~), where s is a small parameter and A(y) is a 
stationary random function, and subjected to a tensile stress a in the y direction is reduci- 
ble to the problem of a half-plane x 
q2 = odA/dy on the boundary Y = 0 2 

0 anbjtcted to random shearing loads of intensity 
111. 

Setting .t t EI 0 and 2s 1 = a x$(h), where a (xl is the spectral density of the random func- 
tion dA/dy, then the expression for the moment 

B (R) = psa?‘r 1 +x&=x,=* 
which was obtained in [ll] by a different method, is found here, with the aid of (3.7) and 
(3.81, as 

B(q)=40’~n(l)cos(kq)dl. 

0 

2) In [12], the aolotion is obtained to the P 
roblem of a half-plane subjected to the action 

of a normal random load with &correlation (’ white noise” type of load). 
Settin 0 

Is 
P const and s3= 0 in (3.7) and (3.81, we obtain the relations which were ob- 

tained in 12 by a different method. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8, 

9. 

10. 
11. 

12. 
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